青岛能源所在石墨炔基高效储钠电极材料研究中

2019-06-25 作者:科学研究   |   浏览(77)

石墨炔材料是一种唯一能通过低温、常压下合成,同时含有sp和sp2两种杂化形式碳的二维平面全碳材料,是中国科学家在国际上引领的新的研究领域,具有中国知识产权。目前石墨炔已实现了样品的快速宏量制备,及百平方厘米大面积、高质量薄膜的可控制备。石墨炔具有大共轭体系、优异的导电性能、及优良的化学稳定性,特别是丰富的分子孔道可以提供更多的存储空间及位点,有利于锂钠等金属的吸附及传输。因此,石墨炔材料在多种储能器件方面均展现出优异的综合性能和巨大的应用空间。石墨炔的基础和应用研究,一直吸引世界各国科学家的目光。

可穿戴智能设备是未来科学与社会进步的重要标志之一,也是国家的重大战略需求,其长久的续航能力依赖于高性能的柔性储能电池。针对如何提高电极材料的柔性和容量这一科学问题,在中国科学院院士李玉良的指导下,中科院青岛生物能源与过程研究所新型能源碳素材料团队与中科院化学研究所合作,研发了一种石墨炔基分子材料,改变了传统的电池材料观念,实现了高性能柔性电池的制备。该研究工作具有很高的原创性,在线发表在Nature Communications上。 石墨炔材料由于其奇特sp杂化的电子结构和自然形成的超大孔洞结构,对电子、离子以及物质的输运具有关键作用,表现出来的性质是其它材料不可替代的。对于高性能器件的制备,特别是可穿戴器具有重要的科学研究意义,被认为是下一代能源、光电、催化和微电子等器件的关键材料,受到国际上的高度关注。科研人员在前期石墨炔研究工作的基础上,改变传统观念,创新性的发展了以石墨炔材料为基础的交叉学科研究,注重石墨炔能量和结构问题,考虑石墨炔的超大π体系和天然的离子传输孔道,利用氢取代炔键,改善了石墨炔离子传输的分子孔道直径,增加了储存金属离子的活性位点,实现了材料的柔性和高容量的储锂、储钠能力,从分子水平上解释了石墨炔导电骨架的自转换和锂、钠离子的嵌入脱出过程的关联,建立了新概念,解决了这一领域的一些重要科学问题,获得了性能优异的电化学储锂、钠性能,理论计算结果证实了上述实验结果和理论分析过程的一致性。尤其是该材料在钠离子电池的测试研究中所展现的电化学储钠能力在同类材料中具有领先地位,完全可能成为新一代高性能、柔性储能电池,为我国未来电化学储能器件的研究带来了新视角和新理念,将积极地推动我国十三五新能源和新材料研究规划进展。

近日,在中国科学院院士李玉良的指导下,中科院青岛生物能源与过程研究所研究员黄长水带领的碳基材料与能源应用研究组,将石墨炔类材料先后应用于锂离子电池、钠离子电池、超级电容器、锂硫电池等多种能源存储器件,并对石墨炔材料结构与电化学性能之间的构效关系进行了深入研究。

研究工作获得了国家自然科学基金重大项目和面上项目、中科院前沿科学研究计划、中科院“百人计划”以及自然科学基金山东省杰出青年基金等的支持。

该研究组研发、制备了一类新型的硼代石墨炔,并通过理论计算与器件性能表征相结合的方式对其能带结构、电化学性能及储钠机制进行深入分析。通过理论计算,研究了硼代石墨炔材料的能级在炔键与中心杂原子上的分布情况,并进一步分析该类材料能级结构与在实验中所展现的输运性能之间的关系。通过对硼代石墨炔双层排列构型的理论分析结果与实验中获得XRD散射角及分子孔道孔径与分布情况相结合,探讨了硼代石墨炔分子结构与分子平面堆积方式,以及孔径结构之间的内在联系。研究发现,硼代石墨炔对钠原子特殊的化学吸附作用,可以获得极高的理论储钠容量。器件测试结果也证实以硼代石墨炔为电极材料的钠离子电池,具有优异的综合性能,充分显示了该类材料在钠离子电池器件中具备很强的应用潜力,开创了新型储能器件电极材料研究的新方向。相关研究成果被选为VIP文章发表在《德国应用化学》上。

jin2055金沙网站 1

研究工作获得国家自然科学基金重大项目、中科院“百人计划”、山东省杰出青年基金等的支持。

青岛能源所在石墨炔能源存储与转化研究中取得进展

相关链接: 1 2 3 4 5 6

论文链接:1 2 3 4 5 6

本文由jin2055金沙网站发布于科学研究,转载请注明出处:青岛能源所在石墨炔基高效储钠电极材料研究中

关键词: jin2055金沙网站